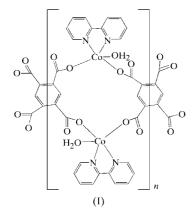
# metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# catena-Poly[bis[aqua(2,2-bipyridine- $\kappa^2 N, N'$ )cobalt(II)]- $\mu$ -1,2,4,5-benzene-tetracarboxylato- $\kappa^4 O^1$ : $O^2$ : $O^3$ : $O^4$ ]

## Hong-Ping Xiao,\* Mao-Lin Hu, Qian Shi and Xin-Hua Li


Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China Correspondence e-mail: xhpch@163.com

Received 4 November 2003 Accepted 25 November 2003 Online 13 December 2003

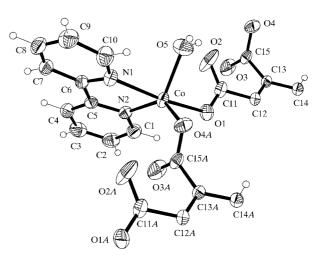
In the title complex,  $[Co_2(C_{10}H_2O_8)(C_{10}H_8N_2)_2(H_2O)_2]$ , the four carboxylate groups are fully deprotonated and coordinate to four Co<sup>II</sup> cations in a monodentate fashion, forming a onedimensional ribbon-like double-chain structure, with centrosymmetric  $[Co_2(C_{10}H_2O_8)(C_{10}H_8N_2)_2(H_2O)_2]$  repeating units and a cavity of approximately  $6.8 \times 6.6$  Å. Moreover, a threedimensional supramolecular structure is formed by face-toface  $\pi$ - $\pi$  interactions between the aromatic rings of the 2,2'bipyridine moieties of two adjacent chains, and by hydrogenbonding interactions between the coordinated aqua O atom and the coordinated carboxyl O atom from different chains.

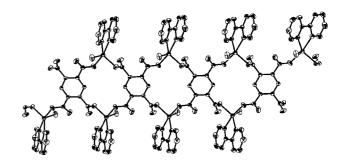
# Comment

Coordinate polymer solids with a variety of cavities or channels are currently under intense study because of the scope they offer for the generation of new materials with a range of potentially useful properties (Yaghi *et al.*, 1998; Stein *et al.*,



1993). Popular bridging ligands in this field are 1,2,4,5benzenetetracarboxylic acid (H<sub>4</sub>TCB) and 4,4'-bipyridine, and their derivatives (Eddaoudi *et al.*, 2001). We have studied some transition metal complexes bridged by TCB<sup>4-</sup> or H<sub>2</sub>TCB<sup>2-</sup> anions, such as those with Co<sup>II</sup> (Wang *et al.*, 2000),





Figure 1

The coordination environment of the  $Co^{II}$  ion in (I), with the atomnumbering scheme, showing displacement ellipsoids at the 50% probability level.

Ni<sup>II</sup> (Cheng *et al.*, 2001) and Cu<sup>II</sup> (Hu *et al.*, 2003). In the course of our studies, the title novel infinite one-dimensional coordination polymer,  $[Co_2(TCB)(2,2'-bipy)_2(H_2O)_2]_n$  (2,2'-bipy is 2,2'-bipyridine), (I), was prepared and its structure is reported here. It should be noted that the synthetic conditions, such as H-atom receptors, temperature and solvents, *etc.*, play an imporant role in determining the compositions of these complexes.

In (I), each Co<sup>II</sup> cation has a five-coordination environment, completed by two carboxyl O atoms belonging to two TCB<sup>4–</sup> anions, one aqua O atom and two N atoms from one 2,2'-bipy ligand (Fig. 1). The Co–O bond lengths are all about 2.05 Å, while the Co–N1 bond [2.1590 (17) Å] is longer than the Co–N2 bond [2.0640 (17) Å]. An infinite one-dimensional polymer with a double-chain structure is formed by the Co<sup>II</sup> cations, the  $\mu_4$ -bridging TCB<sup>4–</sup> anions, the aqua molecules and the terminal 2,2'-bipy ligands (Fig. 2).

The coordination mode of the TCB<sup>4–</sup> anion in (I) is similar to that in  $[Cu_2(TCB)(phen)_2]_n \cdot nH_2O$  (phen is 1,10-phenanthroline; Shi *et al.*, 2001). The four carboxylate groups are fully deprotonated and coordinate to four Co<sup>II</sup> cations in a monodentate fashion, forming a one-dimensional ribbon-like



**Figure 2** The double-chain structure of (I), showing the cavities.

double-chain structure with cavities of approximately  $6.8 \times 6.6$  Å. Intermolecular hydrogen-bonding interactions of 2.623 (2) Å are found between the coordinated aqua O atom and the coordinated carboxyl O atom from different chains, resulting in a two-dimensional supramolecular structure.

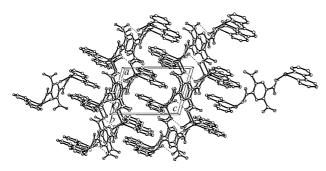



Figure 3

The three-dimensional network structure of (I).

Furthermore, a three-dimensional network structure is formed by face-to-face  $\pi$ - $\pi$  interactions of approximately 3.78 Å between the aromatic rings of the 2,2'-bipy ligands of two adjacent chains (Fig. 3).

# **Experimental**

A solution of dimethylformamide (10 ml) containing  $CoCl_2 \cdot 6H_2O$  (0.5 mmol, 0.119 g) and  $H_4TCB$  (0.5 mmol, 0.127 g) was added slowly to a solution of dimethylformamide (10 ml) containing 2,2'-bipyridine (0.5 mmol, 0.078 g). The mixture was stirred for 30 min and left to stand at room temperature for about three weeks. Deep-red prism-shaped crystals of (I) were obtained.

# Crystal data

| $[Co_2(C_{10}H_2O_8)(C_{10}H_8N_2)_2(H_2O)_2]$ | Z = 1                                     |
|------------------------------------------------|-------------------------------------------|
| $M_r = 716.38$                                 | $D_x = 1.766 \text{ Mg m}^{-3}$           |
| Triclinic, $P\overline{1}$                     | Mo $K\alpha$ radiation                    |
| a = 7.5859 (8) Å                               | Cell parameters from 534                  |
| b = 8.9838 (10)  Å                             | reflections                               |
| c = 10.6729 (11)  Å                            | $\theta = 2.4 - 23.0^{\circ}$             |
| $\alpha = 80.441 \ (2)^{\circ}$                | $\mu = 1.30 \text{ mm}^{-1}$              |
| $\beta = 72.913 \ (2)^{\circ}$                 | T = 273 (2)  K                            |
| $\gamma = 77.096 \ (2)^{\circ}$                | Prism, red                                |
| $V = 673.75 (12) \text{ Å}^3$                  | $0.31 \times 0.21 \times 0.12 \text{ mm}$ |
| Data collection                                |                                           |
| Bruker SMART CCD area-detector                 | 2406 independent reflections              |

| Bruker SMART CCD area-detector       | 2406 independent reflections           |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 2273 reflections with $I > 2\sigma(I)$ |
| $\varphi$ and $\omega$ scans         | $R_{\rm int} = 0.015$                  |
| Absorption correction: multi-scan    | $\theta_{\rm max} = 25.2^{\circ}$      |
| (SADABS; Bruker, 2000)               | $h = -9 \rightarrow 9$                 |
| $T_{\min} = 0.727, T_{\max} = 0.855$ | $k = -10 \rightarrow 10$               |
| 4962 measured reflections            | $l = -12 \rightarrow 12$               |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0362P)^2]$                   |
|---------------------------------|-----------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.027$ | + 0.3213P]                                                |
| $wR(F^2) = 0.071$               | where $P = (F_o^2 + 2F_c^2)/3$                            |
| S = 1.08                        | $(\Delta/\sigma)_{\rm max} = 0.023$                       |
| 2406 reflections                | $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 217 parameters                  | $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$  |
| H atoms treated by a mixture of |                                                           |
| independent and constrained     |                                                           |
| refinement                      |                                                           |

## Table 1

Hydrogen-bonding geometry (Å, °).

| $D - H \cdots A$                                                           | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------------------------------------------|------------|-------------------------|--------------|---------------------------|
| $\begin{array}{c} O5{-}H12{\cdots}O4^{i}\\ O5{-}H13{\cdots}O2 \end{array}$ | 0.854 (9)  | 1.770 (10)              | 2.623 (2)    | 177 (3)                   |
|                                                                            | 0.855 (10) | 2.010 (17)              | 2.715 (2)    | 139 (2)                   |

Symmetry code: (i) 1 - x, 1 - y, -z.

The positions and isotropic displacement parameters of the water H atoms, H12 and H13, were refined subject to O-H = 0.85 (1) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å, with  $U_{\rm iso}(H) = 1.2U_{\rm eq}(C)$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (grant No. 202137).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1428). Services for accessing these data are described at the back of the journal.

## References

- Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, Y. Q., Lin, W. J., Hu, M. L., Yuan, J. X., Wang, S. & Wang, J. G. (2001). *Chin. J. Chem.* 19, 321–324.
- Eddaoudi, M., Moler, D. B., Li, H., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Hu, M.-L., Xiao, H.-P., Wang, S. & Li, X.-H. (2003). Acta Cryst. C59, m454–m455.
- Shi, Q., Cao, R., Sun, D. F., Hong, M. C. & Liang, Y. C. (2001). *Polyhedron*, **20**, 3287–3293.
- Stein, A., Keller, S. W. & Mallouk, T. E. (1993). Science, 259, 1558–1664.
- Wang, S., Hu, M. L., Yuan, J. X., Cheng, Y. Q., Lin, J. J. & Wang, Z. Y. (2000). *Chin. J. Chem.* 18, 546–550.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–481.